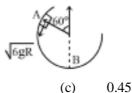


#### Max. Marks: 200

Date: 28.11.2022

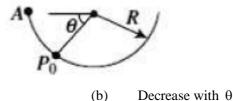
### JB 2 MR BATCH PHYSICS : PART TEST (SET A) Topic: Circular Motion


A train is moving towards north. At one place it turns towards north-east, here we observe that 1. (a) The radius of curvature of outer rail will be greater than that of the inner rail (b) The radius of the inner rail will be greater than that of the outer rail The radius of curvature of one of the rails will be greater (c) The radius of curvature of the outer and inner rails will be the same (d) 2. The angular speed of a fly wheel making 120 revolutions/minute is  $4 \pi^2$  rad/s  $2\pi$  rad/s (b)  $\pi$  rad/s (d)  $4\pi$  rad/s (a) (c) 3. Certain neutron stars are believed to be rotating at rev/sec. If such a star has a radius of 20 km, the acceleration of an object on the equator of the star will be:  $20 \times 10^8 \text{ m/sec}^2$  $120 \times 10^{5} \text{ m/sec}^{2}$ (a) (b)  $8 \times 10^5 \text{ m/sec}^2$ (c) (d)  $4 \times 10^8 \text{ m/sec}^2$ 4. If  $a_r$  and  $a_t$  represent radial and tangential accelerations, the motion of a particle will be uniformly circular if:  $a_r = 0$  and  $a_t = 0$  $a_r = 0$  but  $a_t \neq 0$  $a_r \neq 0$  but  $a_t = 0$ (b) (c) (d)  $a_r \neq 0$  and  $a_t \neq 0$ (a) 5. A stone of mass 0.5 kg is attached to a string of length 2 m and is whirled in a horizontal circle. If the string can with stand a tension of 9N, the maximum velocity with which the stone can be whirled is (a) 6 m/s (b) 8 m/s (c) 4 m/s(d) 12 m/sA particle moves from rest at 'A' on the surface of a smooth circular of radius 'r' as shown. At B it leaves the 6. cylinder. The equation relating  $\alpha$  and  $\beta$  is  $3 \sin \alpha = 2 \cos \beta$  $2 \sin \alpha = 3 \cos \beta$ (a) (b)  $3 \sin \beta = 2 \cos \alpha$  $2 \sin \beta = 3 \cos \alpha$ (c) (d) **Space for Rough Work** 



7. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is

(a) 
$$\sqrt{u^2 - 2gL}$$
 (b)  $\sqrt{2gL}$  (c)  $\sqrt{u^2 - gL}$  (d)  $\sqrt{2(u^2 - gL)}$ 


8. The figure shows a smooth vertical circular track AB of radius R. A block slides R. A block slides along the surface AB when it is given a velocity equal to  $\sqrt{6gR}$  art point A. The ratio of the force exerted by the track on the block at point A to that at point B is



(d) 0.55

9. A 2 kg stone is swinging in a vertical circle by attaching it at the end of a string of length 2 m. If the string can withstand a tension of 140.6 N, the maximum speed with which the stone can be roated is
(a) 22 ms<sup>-1</sup>
(b) 44 ms<sup>-1</sup>
(c) 33 ms<sup>-1</sup>
(d) 11 ms<sup>-1</sup>

10. A bead of mass m is released from rest at A to move along the fixed smooth circular track as shown in figure. The ratio of magnitudes of centripetal force and normal reaction by the track on the bead at any point P<sub>0</sub> described by the angle  $\theta(\neq 0)$  would



(a) Increase with  $\theta$ 

(a)

0.25

(b)

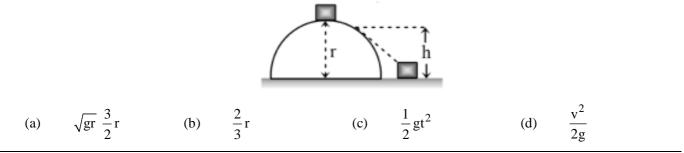
0.35

(c) Remain constant

(d) First increase with  $\theta$  and then decrease

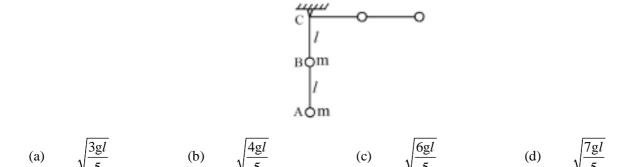


11. Two identical cars A and B are moving at 36 km/h. A goes on a bridge, convex upward and B on concave upward. The radius of curvature of the bridge is 20 m. The ratio of normal forces exerted on the cars when they are at the middle of bridges is  $(g = 10 \text{ m/s}^2)$ 


12. A particle suspended by a thread of length *l* is projected horizontally with a velocity  $\sqrt{3gl}$  at the lowest point. The height from the bottom at which the tension in the string becomes zero is

(a) 
$$\frac{4l}{3}$$
 (b)  $\frac{2l}{3}$  (c)  $\frac{5l}{3}$  (d)  $\frac{l}{3}$ 

13. A body is revolving in a vertical circle with constant mechanical energy. the speed of the body at the highest point is  $\sqrt{2rg}$ . The speed of the body at the lowest point is


(a) 
$$\sqrt{7 \text{gr}}$$
 (b)  $\sqrt{6 \text{gr}}$  (c)  $\sqrt{8 \text{gr}}$  (d)  $\sqrt{9 \text{gr}}$ 

- 14. A water bucket of mass 'm' is revolved in a verticle circle with the help of a rope of length 'r'. If the velocity of the bucket at the lowest point is  $\sqrt{7}$ gr . Then the velocity and tension in the rope at the highest point are
  - (a)  $\sqrt{3\text{gr}}$ , 2mg (b)  $\sqrt{2\text{gr}}$ , mg (c)  $\sqrt{\text{gr}}$ , mg (d) Zero, Zero
- 15. A small body of mass m sides down from the top of a hemisphere of radius r. The surface of the block and hemisphere are frictionless. The height at which the body losses contact with the surface of the sphere is



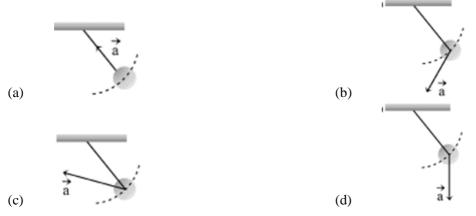


- 16. A person wants to drive on the vertical surface of a large cylindrical wooden 'well' commonly known as 'death well' in a circus. The radius of the well is 2 m, and the coefficient of friction between the tyres of the motorcycle and the wall of the well is 0.2. The minimum speed the motorcyclist must have in order to prevent slipping should be
  - (a) 10 m/s (b) 15 m/s (c) 20 m/s (d) 25 m/s
- 17. A weightless rod of length 2I carries two equal masses 'm', one tied at lower end A and the other at the middle of the rod at B. The rod can rotate in a vertical plane about a fixed horizontal axis passing through C. The road is released from rest in a horizontal position. The speed of the mass B at the instant rod become vertical is



- 18. A pendulum consists of a wooden bob of mass 'm' and length 'l'. A bullet of mass  $m_1$  is fired towards the pendulum with speed  $v_1$ . The bullet emerges out of the bob with a speed  $v_1/3$  and the bob just completes motion along a vertical circle. Find ' $v_1$ '.
  - (a)  $\left(\frac{m}{m_1}\right)\sqrt{5gl}$  (b)  $\frac{3}{2}\left(\frac{m}{m_1}\right)\sqrt{5gl}$  (c)  $\frac{2}{3}\left(\frac{m_1}{m}\right)\sqrt{5gl}$  (d)  $\left(\frac{m_1}{m}\right)\sqrt{gl}$
- 19. A car turns a corner on a slippery road at constant speed of 12 m/s. If the coefficient of friction is 0.4, the minimum radius of the arc is in metres in which the car turns is
  (a) 72
  (b) 36
  (c) 18
  (d) 9
- A car of mass 1000 kg negotiates a banked curved of radius 90 m on a frictionless road. If the banking angle is 45°, the speed of the car is:

(a)  $10 \text{ ms}^{-1}$  (b)  $20 \text{ ms}^{-1}$  (c)  $30 \text{ ms}^{-1}$  (d)  $5 \text{ ms}^{-1}$ Space for Rough Work




21. A car turns a corner on a slippery road at a constant speed of 10 m/s. If the coefficient of friction is 0.5, the minimum radius of the arc in metre in which the car turns is (Giving  $g = 10 \text{ m/s}^2$ ) (a) 20 (b) 10 (c) 5 (d) 4

Assuming the coefficient of friction between the road and tyres of a car to be 0.5, the maximum speed with which the car can move round a curve of 40.0 m radius without slipping, if the road is unbanked, should be
(a) 25 m/s
(b) 19 m/s
(c) 14 m/s
(d) 11 m/s

23. A wooden block is placed inside a rotating cylindrical shell of radius 4 m, if the coefficient of friction between shell and block is 0.2, then what should be the angular velocity of the cylinder so that wooden block does not fall?  $(g = 9.8 \text{ m/s}^2)$ 

- (a) 3.5 rad/s (b) 4.5 rad/s (c) 3.0 rad/s (d) 4.0 rad/s
- 24. A simple pendulum is oscillating without damping. When the displacement of the bob is less than maximum, its acceleration vector  $\vec{a}$  is correctly shown in



25. Two point size bodies of the same mass are knotted to a horizontal string one at the end, and the other at the midpoint of it. The string is rotated in a horizontal plane with the other end as the center. If T is tension in the string between centre of circles and first body then the tension in the string between the two bodies is

| (a) | $\frac{T}{2}$ | (b) | 2T | (c) | $\frac{2T}{3}$ | (d) | $\frac{3T}{2}$ |
|-----|---------------|-----|----|-----|----------------|-----|----------------|
|-----|---------------|-----|----|-----|----------------|-----|----------------|





# JB 2 MR BATCH CHEMISTRY : PART TEST (SET A) Topic: Chemical Bonding + Mole Concept + Periodic Properties

|     |        | Topic. Ch                                                           | cinical                          | Donuing + Mole                                                      | Conce           | ept + 1 er louie 1 f                                                 | operne    | 5                                                                   |  |  |
|-----|--------|---------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-----------|---------------------------------------------------------------------|--|--|
| 26. | For co | ompounds,                                                           |                                  |                                                                     |                 |                                                                      |           |                                                                     |  |  |
|     | (A)    | Tetracyanoethene                                                    | e (B)                            | Carbon dioxide                                                      | (C)             | Benzene                                                              | (D)       | 1, 3-Butadiene                                                      |  |  |
|     | Ratio  | of $\sigma$ and $\pi\text{-bonds}$ is                               | in order                         | •                                                                   |                 |                                                                      |           |                                                                     |  |  |
|     | (a)    | A = B < C < D                                                       | (b)                              | A = B < D < C                                                       | (c)             | A = B = C = D                                                        | (d)       | C < D < A < B                                                       |  |  |
| 27. | Amor   | ng the following whi                                                | ich spec                         | ies has same number                                                 | of $\sigma$ and | $\pi$ -bonds?                                                        |           |                                                                     |  |  |
|     | (a)    | $C_7H_8$                                                            | (b)                              | $C_2(CN)_4$                                                         | (c)             | $C_2H_4$                                                             | (d)       | $HC \equiv CH$                                                      |  |  |
| 28. | The n  | number and type of b                                                | onds be                          | tween two carbon ato                                                | oms in C        | aC <sub>2</sub> are:                                                 |           |                                                                     |  |  |
|     | (a)    | one sigma (σ) and                                                   | l one pi                         | $(\pi)$ bond                                                        | (b)             | one sigma ( $\sigma$ ) and two pi ( $\pi$ ) bonds                    |           |                                                                     |  |  |
|     | (c)    | one sigma ( $\sigma$ ) and                                          | l one an                         | d a half pi ( $\pi$ ) bond                                          | (d)             | one sigma (σ) bond                                                   |           |                                                                     |  |  |
| 29. | Comp   | pounds formed by sp                                                 | <sup>3</sup> d <sup>2</sup> -hyb | ridization will have co                                             | onfigura        | tion:                                                                |           |                                                                     |  |  |
|     | (a)    | square planar                                                       |                                  |                                                                     | (b)             | octahedral                                                           |           |                                                                     |  |  |
|     | (c)    | trigonal bipyrami                                                   | dal                              |                                                                     | (d)             | pentagonal bipyra                                                    | midal     |                                                                     |  |  |
| 30. | A mo   | lecule in which sp <sup>2</sup> -l                                  | hybrid o                         | orbitals are used by the                                            | e central       | l atom in forming cov                                                | alent bo  | nd is:                                                              |  |  |
|     | (a)    | $H_2$                                                               | (b)                              | $\mathbf{SO}_2$                                                     | (c)             | PCl <sub>5</sub>                                                     | (d)       | $N_2$                                                               |  |  |
| 31. | The c  | correct hybridization                                               | state of                         | sulphur atom in SF <sub>2</sub> ,                                   | SF4 and         | SF <sub>6</sub> molecules is res                                     | pectively | /:                                                                  |  |  |
|     | (a)    | sp <sup>3</sup> d, sp <sup>3</sup> , sp <sup>3</sup> d <sup>2</sup> | (b)                              | sp <sup>3</sup> , sp <sup>3</sup> d, sp <sup>3</sup> d <sup>2</sup> | (c)             | sp <sup>3</sup> d <sup>2</sup> , sp <sup>3</sup> , sp <sup>3</sup> d | (d)       | sp <sup>3</sup> d <sup>2</sup> , sp <sup>3</sup> d, sp <sup>3</sup> |  |  |
| 32. | What   | is the hybridization                                                | of As in                         | $AsF_4^-$ ion?                                                      |                 |                                                                      |           |                                                                     |  |  |
|     | (a)    | sp                                                                  | (b)                              | $sp^2$                                                              | (c)             | sp <sup>3</sup>                                                      | (d)       | sp <sup>3</sup> d                                                   |  |  |
| 33. | The h  | ybridization of P in                                                | phospha                          | ate ion ( $PO_4^{3-}$ ) is the s                                    | same as i       | in:                                                                  |           |                                                                     |  |  |
|     | (a)    | I in ICI <sub>4</sub> -                                             | (b)                              | S in SO <sub>3</sub>                                                | (c)             | N in NO <sub>3</sub> <sup>-</sup>                                    | (d)       | S in SO <sub>3</sub> <sup>2–</sup>                                  |  |  |
|     |        |                                                                     |                                  |                                                                     |                 |                                                                      |           |                                                                     |  |  |



Learning with the Speed of Mumbai and the Tradition of Kota

| 34. | sp²-h             | ybridization is sho               | wn by:                  |                                       |                |                                              |                 |                                        |
|-----|-------------------|-----------------------------------|-------------------------|---------------------------------------|----------------|----------------------------------------------|-----------------|----------------------------------------|
|     | (a)               | BeCl <sub>2</sub>                 | (b)                     | BF <sub>3</sub>                       | (c)            | NH <sub>3</sub>                              | (d)             | XeF <sub>3</sub>                       |
| 35. | In wł             | nich molecule sulp                | hur atom i              | is not sp <sup>3</sup> -hybridize     | d?             |                                              |                 |                                        |
|     | (a)               | $SO_4^2$                          | (b)                     | $SF_4$                                | (c)            | $SF_2$                                       | (d)             | None                                   |
| 36. | Carb              | on atoms in C <sub>2</sub> (CN    | ) <sub>4</sub> are:     |                                       |                |                                              |                 |                                        |
|     | (a)               | sp-hybridised                     |                         |                                       | (b)            | sp <sup>2</sup> -hybridised                  |                 |                                        |
|     | (c)               | sp- and sp <sup>2</sup> -hyb      | ridised                 |                                       | (d)            | sp, sp <sup>2</sup> and sp <sup>3</sup> -h   | ybridised       |                                        |
| 37. | OF <sub>2</sub> i | s:                                |                         |                                       |                |                                              |                 |                                        |
|     | (a)               | linear molecule                   | and sp-h                | ybridized                             | (b)            | tetrahedral mole                             | cule and s      | p <sup>3</sup> -hybridized             |
|     | (c)               | bent molecule a                   | and sp <sup>3</sup> -hy | bridized                              | (d)            | none of the abov                             | ve              |                                        |
| 38. | The l             | ybridization of car               | rbon atom               | is in C–C single boi                  | nd of HC≡      | = C – Ch = CH <sub>2</sub> is:               |                 |                                        |
|     | (a)               | $sp^3 - sp^3$                     | (b)                     | sp <sup>2</sup> -sp <sup>3</sup>      | (c)            | sp-sp <sup>2</sup>                           | (d)             | sp <sup>3</sup> -sp                    |
| 39. | Whic              | h of the following                | represent               | s the given mode of                   | f hybridiza    | tion $sp^2 - sp^2 - sp$ -                    | - sp from l     | eft to right?                          |
|     | (a)               | $H_2C = CH - C$                   | ≡N                      |                                       | (b)            | $HC \equiv C - C \equiv C$                   |                 |                                        |
|     | (c)               | $H_2C = C = C \equiv$             | CU.                     |                                       | (d)            | H <sub>2</sub> C                             | CH <sub>2</sub> |                                        |
|     |                   |                                   |                         | 4 5 6                                 |                |                                              |                 |                                        |
| 40. | In the            | e compound CH <sub>2</sub> =      | =CH=C                   | $H_2 - CH_2 - C \equiv CH_2$          | H, the C–      | C bond is of the ty                          | pe:             |                                        |
|     | (a)               | sp-sp <sup>2</sup>                | (b)                     | sp <sup>3</sup> -sp <sup>3</sup>      | (c)            | sp-sp <sup>3</sup>                           | (d)             | sp <sup>2</sup> -sp <sup>3</sup>       |
| 41. | In wł             | nich of the followin              | ng molecu               | les/ions are all the l                | bonds not      | equal?                                       |                 |                                        |
|     | (a)               | $\mathrm{BF}_{4}^{-}$             | (b)                     | $SF_4$                                | (c)            | SiF <sub>4</sub>                             | (d)             | $XeF_4$                                |
| 42. | The l             | ybridization of orl               | bitals of N             | atoms in NO <sub>3</sub> -, NO        | $D_2^+$ and NI | H <sub>4</sub> <sup>+</sup> are respectively | :               |                                        |
|     | (a)               | $sp, sp^2, sp^3$                  | (b)                     | sp <sup>2</sup> , sp, sp <sup>3</sup> | (c)            | sp, sp <sup>3</sup> , sp <sup>2</sup>        | (d)             | sp <sup>2</sup> , sp <sup>3</sup> , sp |
| 43. | The p             | pair having similar               | geometry                | is:                                   |                |                                              |                 |                                        |
|     | (a)               | BF <sub>3</sub> , NF <sub>3</sub> | (b)                     | BF <sub>3</sub> , AlF <sub>3</sub>    | (c)            | BeF <sub>2</sub> , H <sub>2</sub> O          | (d)             | BCl <sub>3</sub> , PCl <sub>3</sub>    |
|     |                   |                                   |                         | ~ ~ ~                                 |                |                                              |                 |                                        |
|     |                   |                                   |                         | Space for F                           | 2011gh Wo      | rk                                           |                 |                                        |



Learning with the Speed of Mumbai and the Tradition of Kota

| 44. | 4. Molecular shape of $SF_4$ , $CF_4$ and $XeF_4$ are:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                            |                  |                                                |                                     |   |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------------|------------------------------------------------|-------------------------------------|---|--|--|--|--|--|--|
|     | (a)                                                                   | The same with 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 and 1                          | lone pair of el            | ectrons respect  | ively                                          |                                     |   |  |  |  |  |  |  |
|     | (b)                                                                   | The same with 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 and 1                          | lone pair of el            | ectrons respect  | ively                                          |                                     |   |  |  |  |  |  |  |
|     | (c)                                                                   | Different with 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 and 2                          | lone pairs of e            | lectrons respect | tively                                         |                                     |   |  |  |  |  |  |  |
|     | (d)                                                                   | Different with 1, 0 and 2 lone pairs of electrons respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                            |                  |                                                |                                     |   |  |  |  |  |  |  |
| 45. | The first ionization potential of Na, Mg, Al and Si are in the order: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                            |                  |                                                |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | Na < Mg > Al <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Si                               |                            | (b)              | Na > Mg > Ab                                   | l > Si                              |   |  |  |  |  |  |  |
|     | (c)                                                                   | Na > Mg < Al > S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Si                               |                            | (d)              | Na > Mg > Al < Si                              |                                     |   |  |  |  |  |  |  |
| 46. | Lowe                                                                  | st ionization potenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al in a p                        | eriod is shown             | ı by:            |                                                |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | alkali metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                            | (b)              | halogens                                       |                                     |   |  |  |  |  |  |  |
|     | (c)                                                                   | transition elemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ts                               |                            | (d)              | alkaline earth                                 | metals                              |   |  |  |  |  |  |  |
| 47. | The le                                                                | owest ionization ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ergy wou                         | Ild be associate           | ed with the elec | tronic structure:                              |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | 1s <sup>2</sup> , 2s <sup>2</sup> , 2p <sup>6</sup> , 3s <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                            | (b)              | $1s^2$ , $2s^2$ , $2p^5$                       |                                     |   |  |  |  |  |  |  |
|     | (c)                                                                   | $1s^2$ , $2s^2$ , $2p^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            | (d)              | $1s^2, 2s^2, 2p^6, 3$                          | $3s^2 3p^2$                         |   |  |  |  |  |  |  |
| 48. | The r                                                                 | eaction, $H_2S + H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 = S + 2                        | H <sub>2</sub> O manifests | 3:               |                                                |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | oxidizing action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of H <sub>2</sub> O <sub>2</sub> |                            | (b)              | reducing natu                                  | re of H <sub>2</sub> O <sub>2</sub> |   |  |  |  |  |  |  |
|     | (c)                                                                   | acidic nature of H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H_2O_2$                         |                            | (d)              | alkaline natur                                 | e of H <sub>2</sub> O <sub>2</sub>  |   |  |  |  |  |  |  |
| 49. | In Ni                                                                 | (CO) <sub>4</sub> , the oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | state of                         | Ni is:                     |                  |                                                |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b)                              | zero                       | (c)              | 2                                              | (d)                                 | 8 |  |  |  |  |  |  |
| 50. | In wh                                                                 | In which of the following reactions the underlined substance is oxidized?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                            |                  |                                                |                                     |   |  |  |  |  |  |  |
|     | (a)                                                                   | $3Mg + \underline{N}_2 = Mg_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_2$                            |                            | (b)              | $2\mathbf{KI} + \mathbf{\underline{Br}}_2 = 2$ | $KBr + I_2$                         |   |  |  |  |  |  |  |
|     | (c)                                                                   | $\underline{CuO} + H_2 = Cu + $ | H <sub>2</sub> O                 |                            | (d)              | $\underline{CO} + Cl_2 = C$                    | OCl <sub>2</sub>                    |   |  |  |  |  |  |  |
|     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                            |                  |                                                |                                     |   |  |  |  |  |  |  |

\* \* \* \* \*





#### Max. Marks: 200

Date: 28.11.2022

# JB 2 MR BATCH PHYSICS : PART TEST (SET A) ANSWER KEY Topic: Circular Motion

| 1.  | (a) | 2.  | (d) | 3.  | (b) | 4.  | (c) | 5.  | (a) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (c) | 7.  | (d) | 8.  | (d) | 9.  | (d) | 10. | (c) |
| 11. | (a) | 12. | (a) | 13. | (b) | 14. | (a) | 15. | (b) |
| 16. | (a) | 17. | (c) | 18. | (b) | 19. | (b) | 20. | (c) |
| 21. | (a) | 22. | (c) | 23. | (a) | 24. | (c) | 25. | (c) |

Date: 28.11.2022

## JB 2 MR BATCH CHEMISTRY : PART TEST (SET A) ANSWER KEY Topic: Chemical Bonding + Mole Concept + Periodic Properties

| 26. | (a) | 27. | (b) | 28. | (b) | 29. | (b) | 30. | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 31. | (b) | 32. | (d) | 33. | (d) | 34. | (b) | 35. | (b) |
| 36. | (c) | 37. | (c) | 38. | (c) | 39. | (a) | 40. | (d) |
| 41. | (b) | 42. | (b) | 43. | (b) | 44. | (d) | 45. | (a) |
| 46. | (a) | 47. | (a) | 48. | (a) | 49. | (b) | 50. | (d) |